Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Bioorg Chem ; 144: 107110, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224636

RESUMEN

Wet age-related macular degeneration (w-AMD) is one of the leading causes of vision loss in industrialized countries. A large body of evidence suggests that inhibitors targeting VEGFR2 may be effective in the treatment of w-AMD. The identification of an oral VEGFR2 inhibitor for the treatment of w-AMD provides an opportunity for a route of administration other than intravitreal injection. While screening potent VEGFR2 inhibitors at the enzyme and cellular levels, ensuring the safety of the compounds was our primary strategy for screening optimal compounds. Finally, compound 16 was identified, exhibiting enhanced inhibition of VEGFR2 enzyme and proliferation of BaF3-TEL-VEGFR2 cells compared to Vorolanib. Compound 16 had a weak inhibitory effect on human Ether-a-go-go-related gene (hERG) channel currents, showing a cardiac safety profile similar to Vorolanib. Compound 16 showed no significant toxicity to human liver cell LX-2, indicating a liver safety profile similar to Vorolanib. The water solubility of compound 16 was found to be higher than that of Vorolanib when tested at pH = 7.4. In addition, compound 16 was found to inhibit VEGFR2 phosphorylation in human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner by WB assay. Furthermore, the in vitro preliminary evaluation of the drug-like properties of compound 16 showed remarkable plasma stability and moderate liver microsomal stability. Based on in vivo pharmacokinetic studies in ICR mice, compound 16 exhibited acceptable oral bioavailability (F = 20.2 %). Overall, these findings provide evidence that compound 16 is a leading potential oral drug candidate for w-AMD.


Asunto(s)
Degeneración Macular , Ratones , Animales , Humanos , Ratones Endogámicos ICR , Células Endoteliales de la Vena Umbilical Humana , Degeneración Macular/tratamiento farmacológico , Inhibidores de la Angiogénesis/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular
3.
Eur J Med Chem ; 265: 116071, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38157596

RESUMEN

In this study, a series of carbamate derivatives incorporating multifunctional carrier scaffolds were designed, synthesized, and evaluated as potential therapeutic agents for Alzheimer's disease (AD). We used tacrine to modify the aliphatic substituent, and employed rivastigmine, indole and sibiriline fragments as carrier scaffolds. The majority of compounds exhibited good inhibitory activity for cholinesterase. Notably, compound C7 with sibiriline fragment exhibited potent inhibitory activities against human acetylcholinesterase (hAChE, IC50 = 30.35 ± 2.07 nM) and human butyrylcholinesterase (hBuChE, IC50 = 48.03 ± 6.41 nM) with minimal neurotoxicity. Further investigations have demonstrated that C7 exhibited a remarkable capacity to safeguard PC12 cells against H2O2-induced apoptosis and effectively suppressed the production of reactive oxygen species (ROS). Moreover, in an inflammation model of BV2 cells induced by lipopolysaccharide (LPS), C7 effectively attenuated the levels of pro-inflammatory cytokines. After 12 h of dialysis, C7 continued to exhibit an inhibitory effect on cholinesterase activity. An acute toxicity test in vivo demonstrated that C7 exhibited a superior safety profile and no hepatotoxicity compared to the parent nucleus tacrine. In the scopolamine-induced AD mouse model, C7 (20 mg/kg) significantly reduced cholinesterase activity in the brain of the mice. C7 was tested in a pharmacological AD mouse model induced by Aß1-42 and attenuated memory deficits at doses as low as 5 mg/kg. The pseudo-irreversible cholinesterase inhibitory properties and multifunctional therapeutic attributes of C7 render it a promising candidate for further investigation in the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Ratas , Ratones , Humanos , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/inducido químicamente , Butirilcolinesterasa/metabolismo , Tacrina/farmacología , Tacrina/uso terapéutico , Acetilcolinesterasa/metabolismo , Carbamatos/farmacología , Peróxido de Hidrógeno/farmacología , Péptidos beta-Amiloides , Barrera Hematoencefálica/metabolismo , Diseño de Fármacos , Relación Estructura-Actividad
4.
Bioorg Chem ; 134: 106441, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36854233

RESUMEN

A novel series of N-methyl-propargylamine derivates were designed, synthesized, and evaluated as isoform-selective monoamine oxidases (MAO) inhibitors for the treatment of nervous system diseases. The in vitro studies showed some of the compounds exhibited considerable MAO-A selective inhibitory activity (IC50 of 14.86-17.16 nM), while some of the others exhibited great MAO-B selective inhibitory activity (IC50 of 4.37-17.00 nM). Further studies revealed that compounds A2 (IC50 against MAO-A: 17.16 ± 1.17 nM) and A5 (IC50 against MAO-B: 17.00 ± 1.10 nM) had significant abilities to protect PC12 cells from H2O2-induced apoptosis and reactive oxygen species (ROS) production. The parallel artificial membrane permeability assay showed A2 and A5 would be potent to cross the blood-brain barrier. The results indicated that A2 showed potential use in the therapy of MAO-A related diseases, such as depression and anxiety; while A5 exhibited promising ability in the treatment of MAO-B related diseases, such as Alzheimer's disease and Parkinson's disease.


Asunto(s)
Enfermedad de Alzheimer , Peróxido de Hidrógeno , Ratas , Animales , Relación Estructura-Actividad , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...